EPS Import Functionality for ReportL ab

A Proposal for the

Google
Summer of Code
By

Mark Peters

mark.peters@ivanhouse.com

Synopsis

ReportLab isa Python Library designed to easily implement PDF output functionality into Python programs.
Currently, ReportLab can import bitmap images of avariety of types and has some native vector graphics
capabilities, but has no support for external vector-based images. This proposal would add import support for
Encapsulated PostScript (EPS) files to ReportL ab, with usage comparable to the current image import
functionality.

This PDF document was produced using Python and ReportLab. The logo above was produced from an EPS file
and imported into ReportL ab using a proof-of-concept of this functionality.

Benefitsto Community

The primary benefit of this proposal will, of course, be increased functionality for the ReportL ab project. The
main increases in functionality will be:

« Smaller PDF Output - Vector format graphics, e.g. EPS, often produce smaller files than bitmap graphics
of comparable quality.

« Better Print Quality - Vector format graphics print at the resolution of the output device. This means that
printing a PDF containing vector format graphics will not result in jagged edges on lines or pixelization
which can occur when printing low resolution bitmap images.

* Better Support for Logos/Clipart - Most high-quality clip art is available in EPS form. It is also a common
format used by graphics professionals for company logos (the Google logo above is an example). EPS
support in ReportLab will make it easier to produce professional documents.

Also, implementation of this proposal will involve much of the work required to implement a complete
PostScript interpreter written in Python. The framework developed for this project, including a PostScript parser
and EPS interpreter, could be useful to other projects in the community.

Finally, asthe visibility of high-quality Python projects increases, the Python community as awhole will benefit.

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 1

Biographical I nformation

Software
Programming since 1982 (started on Commaodore V1C-20).
Languagesinclude BASIC, 65xx assembler, C, C++, Pascal, REXX, awk, unix shell, perl, and Python.

Worked six years for company providing supply-chain communication solutions, mainly fax, email, and
forms integration into ERP (SAP, Baan, Peoplesoft, Oracle) systems. Specific accomplishmentsinclude:

< Implemented Unicode (Chinese) Streamserve forms project for worldwide el ectronics company.
¢ Conducted customer training (both in-house and on-site) in use of Streamserve forms package.
» Designed integration toolkit, written in Python, on which all company integrations were based.

Have used various open source programs over the years, but have never had a good opportunity to
contribute beck to the community. | hope that this proposal will give me that opportunity.

Education
1987-1988 - Completed approximately one year at University of Cincinnati, College of Engineering
2005 - Enrolled at Columbus State Community College, Columbus, OH

Educational Goals - Associates degree in Computer |nformation Technology, Enterprise Devel oper
Track with certificates in Purchasing and L ogistics from the Logistics program. Thisisto position
myself, upon graduation, as a Supply-Chain developer.

Beginning full-time classes Summer Quarter, 2005 (classes start June 27, 2005)

Summary of Project Schedule

June 2 Heard about Google: Summer of Code project

June 3 Selected Project

June 4-6 Planned project proof of concept

June 7-12 Coded proof of concept

June 12-14 Wrote Proposal

by June 24 Proposal Accepted

by July 7 Finish refactoring prototype language framework

July 7-15 Finish implementation of most PostScript operator functions
July 15-21 Flesh out ReportLab interface

July 21-31 Extratime to handle PostScript/PDF operator differences
July 31 Beta Release

Augl-Aug?2l Bug Fixes and documentation

Aug 21 Release

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 2

Project Details

The ReportLab Toolkit is an open source library for generation of PDF documents. As suggested on the ideas
page for the Google Summer of Code project, this project would add Encapsul ated PostScript (EPS) file import
capability to that library. The implementation would be similar to the existing image file import ability, which
allows the importation of bitmap images into created PDF files.

Currently, to use a bitmap image in ReportLab, you would use afunction similar to:
I mage("repl ogo. gi f",w dt h=2*i nch, hei ght=1*i nch)

Weporilab

to produce the following output:

This project would add the ability to use EPSfilesin asimilar fashion. The following code:
EPSI mage(" googl e_summer. eps", wi dt h=2*i nch, hei ght =1*i nch)

Summer of Code g

In order to describe the implementation of this EPS import functionality, a discussion of some of the differences
between PostScript and PDF is necessary.

should produce the following outpuit:

PostScript and PDF are both page description languages, optimized for describing how data should appear on a
printed page. Since both formats were created by Adobe, the languages are quite similar. In theory, this should
make converting from EPS (which is a subset of PostScript) fairly easy. For example, let's look at the PostScript
for drawing aline:

50 100 noveto 150 200 lineto
Thiswill draw aline from coordinates 50,100 to 150,200. Let's examine the PDF equivalent of the sameline:
50 100 m 150 200 |

One would think that it should be pretty easy to convert from one to the other. However, thisis where things
become complicated. While PDF and PostScript both describe pages similarly, PostScript is afull featured
programming language, and PDF is designed to display static output. This means that one can write fairly
complex programs in PostScript. PostScript supports stacks of namespaces, conditionals, looping structures, and
procedure definitions. The ability to define proceduresis what really causes problems converting from EPS to
PDF. Most programs that generate PostScript (and EPS) write a lengthy prologue in the beginning of the file that
defines procedures and assigns them to shortcut names. For example, a procedure might be defined that does a
move and line together:

/ noveandl i ne {noveto |ineto} def
So that the actual code to draw the line now looks like:
150 200 50 100 noveandl i ne

It now becomes impossible to know what the procedure 'moveandlineg' does without implementing at least enough
of a PostScript interpreter to be able to build procedure definitions.

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 3

Project Details (continued)

A PostScript interpreter with full support for all the language features is a major undertaking. The Ghostscript
project has been working on this for many years and is the definitive work in this area. However, the task at hand
(interpreting an EPS file to extract PDF commands) is simplified in a number of ways:

e Theinterpreter does not need to actually render the PostScript into araster image. Thisisone of the main
features that Ghostscript has which is not necessary for this project. When a PostScript drawing command in
encountered, the interpreter only needs to generate a corresponding PDF command (translating 'moveto’ to
'm' in the example above).

* EPSisasimplified subset of full PostScript. EPS files by definition, are designed to be included inside other
files. Because of this, they are limited to one page, with no device-specific operators allowed.

» Writing the interpreter in Python simplifies the project because most of PostScript's complex data structures
map directly to Python data structures (arrays map to lists, dictionaries map to dictionaries, etc...). Python's
introspection ability also allows easier and faster writing of PostScript operators.

This project will be implemented as a module in the ReportLab open source library. There should not be any
dependencies on external libraries, and it should run without problem on any platform that ReportLab supports.

Documentation will be provided to the ReportLab open source library, describing usage and providing examples.
Thisissimplified by the similarity in syntax to the existing image capability.

EPS files can be very complex. The compatibility goal of this project isto properly handle at |east 90% of EPS
files by the betarelease. | plan to continually work to increase that number throughout the beta period and
beyond into the first release. The framework in place will make it easy to maintain this code for updates and bug
fixes.

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 4

Architecture
The architecture of the project is comprised of four primary components:

» Parser/Tokenizer - This component handles the conversion of an input stream of PostScript commands and
parsesit into a series of PostScript tokens of various types.

» PostScript Language Framework - This component will handle tasks specific to the various elements of the
PostScript language. These tasks include maintenance of the dictionary, operand, and execution stacks. This
component will handle definition and execution of procedures. It will be also responsible for looking up and
calling the PostScript operator functions.

» PostScript Operator Functions - This component contains the actual definitions of the operator functions.
Most of the work in a PostScript program happens in these operators. There are operators to manipulate the
stacks, perform arithmetic, and perform graphic operations. The graphic operations will, for the most part,
produce the equivalent PDF commands.

» ReportLab Interface - This component will provide the interface between the components listed above and
the ReportLab library. It will handle the syntax of various functions exposed to the library. It will also provide
support for preconverting EPS filesin a similar manner to the proof-of-concept program. It will also provide
support for storing the object once in the PDF, with subsequent references only generating links to that stored
object.

For example, when processing the following PostScript command:
50 100 add
The Parser/Tokenizer will convert this to the following PostScript tokens:

I nt eger 50
I nt eger 100
Execut abl e Nane add

When processing these tokens, the language framework will push the two integers onto the operand stack, look
up the name 'add' on the dictionary stack, find an operator function of that name in the system dictionary, and call

that function. The code in that function will pull the two values from the operand stack, add them together, and
push the result back onto the stack.

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 5

Project History

While browsing the Python Daily News site on the morning of June 2, | found alink to the Google Summer of
Code project. Looking at the ideas page, the ReportLab idea caught my eye, as | had played around with that
library some and liked what | saw. | decided to make areal attempt to get my proposal accepted.

| started looking at some EPS files and quickly determined that a simple text scraping solution was not going to
cut it for even simple EPSfiles. Also, | have had some experience with scraping text from a PostScript file.
Important safety tip: Doing that with regular expressions is the road to madness. The only option for areal
solution was to write a PostScript interpreter.

To get afed for the complexities involved in writing a PostScript interpreter, | decided to write a
proof-of-concept prototype. My goal was to be able to parse asimple EPSfile. | opened Corel Draw, drew a
rectangle, and exported that as an EPS file. My proof-of-concept goal wasto display that in the output of a PDF
file created in ReportLab.

EPS files usually include a prologue which defines a set of procedures used by that file. Because of the PostScript
prologue that isincluded in the EPS output from Corel Draw, parsing the EPS file to extract the individual
PostScript tokens yielded 3,774 tokens for a simple rectangle. Note that Corel Draw's prologue varies from
prologues written by other applications and those prologues also differ from each other.

| built aframework which includes a Python class to handle the PostScript dictionary stack and which behaves
like a Python dictionary. Also, operand and execute stacks are implemented as Python lists. PostScript objects are
implemented as Python tuplesin the form (type,value). | used Python's introspection ability to simplify the
creation of functions to handle PostScript operators.

Merely defining the function with a certain name automatically creates an operator with that name in the system
dictionary. When an executable name is encountered, it islooked up on the dictionary stack which returns a
reference to that function. That function then gets called to handle that operator. An error results if an unknown
operator name is encountered.

Work on the prototype continued, by processing the rectangle EPS file until it encountered an unknown operator
token, then writing code to handle that operator. After implementing at least minimal definitions for 67 operators,
| was able to interpret the rectangle file without errors.

Next, | needed to create the PDF commands which corresponded to the PostScript ones. With the PostScript and
PDF language reference manuals side by side, | implemented code in each of the PostScript operators to output
the appropriate PDF operator to afile. This gave me afile with all of the PDF operators needed to describe the
graphic in the EPSfile.

| then wrote a function to be used in ReportL ab to import the list of PDF operators, with options to scale and
trand ate the graphic.

This completed my proof-of-concept and proved to me that writing alimited-functionality PostScript interpreter
was within the scope of a summer project.

Finally, | wrote the proposal that you are reading now. It was written using Python and ReportL ab, using EPS
files converted with the proof-of-concept program.

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 6

Details for Deliverablesand Milestones

by July 7 Finish refactoring proof-of-concept inter preter - The interpreter developed as a
proof-of-concept worked well, but began to show some design flaws as
functionality was added and more was learned about the PostScript language. This
isnot a problem, that is the purpose of a proof-of-concept: to learn these things as
early as possible. The first step toward completion, though, will be to refactor the
interpreter with the following specific objectives:

* Rewrite parser as Python Generator - The code which parses PostScript
input and creates tokens is currently a bit of a kludge and should be rewritten as
a Python generator function, allowing either astring or afile object for creation.

» CreateaPostScript object class - Currently, PostScript objects are tuples of a
type string and a value represented by a native Python object. PostScript objects
have a number of attributes which are not handled in the current model. These
include access and execute attributes. Thiswill bring the capabilities and
behavior of objectsin thisinterpreter morein line with the PostScript
specifications. Also, add support for Python arithmetic methods, where

appropriate.

» Bring namesin line with PostScript specifications - Currently, the names of
object types do not match the names as returned by the PostScript 'types
operator. This change would bring those names in line with the specification.
Also, create Python exceptions which match in name to the official PostScript
error types.

» Create Templatefor Operator Functions - Before refactoring the existing
operator functions, create a template for what one should look like, including
style for doc strings, comments, variable haming conventions, assertions, and
exceptions.

» Better Comment Handling - Current support for commentsis minimal. This
should be improved as EPS files actually store important information in
comments.

Upload Work - By this date, work out with mentoring organization where data
should be kept (probably ReportL ab's Subversion server), aswell as policies
regarding updates. Also, decide which version(s) of ReportLab to support.

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 7

Detailsfor Deliverables and Milestones (continued)

July 7-15 Finish implementation of most PostScript operators - Thistime will be spent
fleshing out PostScript operator functions using the template developed previously.
The objective here isto support all of the easy-to-implement functions, even if they
have not been encountered. Also, start collecting EPS files from various sources
and developing new operator functions as needed to process those files. Any
operators not handled after this step should be documented.

July 15-21 Finish ReportLab Interface - Thistime will be spent integrating the PostScript
parser with ReportL ab. Some specific objectives:

* Support Object Caching - Asthe ReportL ab Image routines do, the EPS
support should cache the imported graphic in the document to save on space in
the output.

» Support Object Conversion - Since the conversion step is time consuming,
provide support to preconvert EPS files, or to save the converted file to disk
(much as the proof-of-concept does) similar to the way Python treats compiled

(*.pyc) files.

July 21 - 31 Padding - Some extratime to deal with any remaining issues before Betarelease. |
will possibly need to spend extra time on differences between some PostScript and
PDF operators. Specifically, there are differences in the commands for stroking and
filling arbitrary paths.

July 31 Beta Release

Augl-Aug21 Bug Fixes - As soon as this program hits beta, | expect a variety of "Thiswon't
work with my EPSfile" bug reports. Find those bugs and squash them!

Documentation - Finish the user documentation and examples.

Aug 21 Release - Make sure mentoring organization does not have any outstanding issues
and release it to the world.

Development M ethodology

While every task is approached differently, the methodology used to solve this problem is similar to how |
approach any problem. The methodology used for this problem is summarized below.

* Analyze problem

» Plan and code proof-of-concept programs

» Re-anayze problem, making changes to design as necessary
» Rewrite or refactor proof-of-concept programs

» Systematically complete program features

* Release Beta

» Write Documentation

* Fix Bugs

* Release

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 8

Examples of use

The "Google: Summer of Code" logo used throughout this document was made from an EPS file imported into
CorelDraw, adding the "Summer of Code" text, and exporting as an EPS file. Then, using the proof-of-concept
interpreter, | converted it to the equivalent PDF commands which are saved in the file 'google_summer.out'.
Note: | had to tweak a couple color space operators in the output to get the colors right due to an unresolved bug
(al colorspaceis being interpreted as RGB, but the EPS has a mix of RGB and CY MK). All other operators are
untouched. Thiswill be fixed during the refactoring.

The following code is used to display the Google logo below:

googl e = EPSI mage("googl e_summer. out ")
googl e. hAl'i gn = " CENTER"
get Story(). append(googl e)

Summer of Code 8
Now lets display the logo one inch wide and left justified

googl e = EPSI mage("googl e_summer.out",wdth = 1 * inch)
googl e. hAl'ign = "LEFT"
get Story().append(googl e)

Go gle

Summer of Code

Finally, the rectangle that started it all. Here's the rect.out contents:

%®oundi ngBox: 105 624 155 667

105. 42756 666. 44929000000002 m

154. 60015999999999 666. 44929000000002
154. 60015999999999 625. 04079000000002
105. 42756 625. 04079000000002

105. 42756 666. 44929000000002

h

0.0 0.0 0.0 RG

S

And lets put it 1/2 inch | eft of the left margin.
rect = EPSInage("rect.out",x = -0.5 * inch)

rect.hAlign = "LEFT"
get Story().append(rect)

EPS Import Functionality for ReportLab
aproposal by Mark Peters (mark.peters@ivanhouse.com) Page 9

